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Abstract

-We consider- a finite collection of polyhedra whose defining linear
1 

/, jsystems differ only in their right hand sides. Jeroslow'[5] and Blair [4]

specified conditions under which the convex hull of the union of these

polyhedra is defined by a system whose left hand side is the common left hand

side of the individual systems, and whose right hand side is a convex

combination of the individual right hand sides. -We give,- a new sufficient

condition for this property to hold, which is often easier to recognize. In S
; I f

particular, -me showr. that the conditon is satisfied for polyhedra whose

defining systems involve the node-arc incidence matrices of directed graphs,

with certain right hand sides. 4-We also derive as a special cas the compactA

linear characterization of the two terminal Steiner tree polytope given in

Ball, Liu and Pulleyblank, {-a -
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1. The Result

Consider a collection of nonempty polyhedra in Rn of the form

PL := { x e Rn I A'x = d', x k 0 }, i e T,

where T is a finite set with ITI = t k 2, and for i E T, A' is an m x n matrix

and dI is an m -vector.

It is known (1] (see (2] for a published version) that clconv v (P :iET),

the (closed) convex hull of the union of the polyhedra Pi, is the set of

points x E Rn that have an extension (x, x1, ..., x, X) E R"* '* L satisfying

the conditions

x - Z(xI:i c T) = 0

A( i Ax -d 0, ieT

Z(X :i T) = 1

xX 0, icT

This implies that in all basic solutions to the system (1), X, = 0 or i,

i e T.

The question naturally arises, is there a more compact representation of

Ithe convex hull in the case when A = A for all i c T, i.e. when the polyhedra

are of the form

P := ( x e RI Am= d, x k 0 }, i e T.

In particular, let Q be the set of those x 6 R" that have an extension

(x, %) e RnLt satisfying

Ax- E(di) :i T) =0

(2) E(X :i E T) 1

x 0, X 1 0, i E T,i

and let C := cl cony u (P :i c T).

It is easy to see that C _ Q, since (2) can be obtained from (1) (when

A= A, i c T) by left-multiplying the first equation with A, and then adding



to it all remaining equations except for the last one. However, C 2 Q is not

true in general.

Jeroslow [5] gave a sufficient condition for C = Q to be true. Blair [41

gave two weaker sufficient conditions, one of which is also necessary when a

certain requirement is satisfied. He also showed that recognizing whether

C = Q is NP-hard. We give a new sufficient condition for C = Q which is

someti es easier to recognize.

We will denote by d(X) the convex combination of the right hand sides d

with weights X , i c T; i.e., for X t0, i = i,..,t, such that E(X i :i e T)

1, d(X) = E(d1 \: i e T). Also, we will assume that A is of full row rank.

Theorem 1. C = Q if for every m x m nonsingular submatrix B of A and

every convex combination d( X) of the vectors d i, i e T,

(3) B- d(X) a 0 implies f-ld ' 2 0 for all i c Tsuch that Xi > 0.

1Proof. Let (1') be the system obtained from (1) by replacing each A i by

A. Since C G Q is always true, we have to show only that Q _ C if (3) holds

for every B and X. Suppose (3) holds and let x C Q. W.Z.o.g., assume (x, )

is a basic feasible solution to (2). Then there exists an m x m nonsingular

submatrix B of A such that x = (X, 0), where xE = B-Id(i) > 0. From (3),

,. 0 implies B-1 d' k 0. LettingX = (x 0), where x B-di ,wehave
tha Bx -B-

that (X , ... , x , X) satisfies (W'), hence x e C. It

The assumption that A is of full row rank is not essential. If A does

not have this property, we replace it by any of its maximal n-column

submatrices of full row rank.

2. An Application: Unions of (Multiple) Network Polyhedra

Next we discuss an important class of problems for which condition (3) of

Theorem 1 is always satisfied.

We will say that P1, i c T, are network polyhedra, if A is the node-arc

2
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incidence matrix of a directed graph, and each d has one component equal to

some positive number v, one component equal to -v, and all other components

equal to 0. If v = 1, the network polyhedra are path polyhedra. The P ,

i c T, will be called multiple network polyhedra (multiple path polyhedra) if

A is a block-diagonal matrix with each diagonal block the node-arc incidence

matrix of a directed graph, and each d has a subvector for each block of A,

with exactly one positive and one negative component equal in absolute value

(equal to 1 in absolute value), all remaining components being 0. In other

words, A and d', i c T, are of the form

A . di : ,i T

A = d J: q

where the blanks are zero matrices.

Theorem 2. C = C if the polyhedra P" i c T, are (multiple) network

polyhedra, and for each k e (1,...,q), either the negative or the positive
1k

component of d is in the same position for all i c T.

The proof of Theorem 2 will use the following auxiliary result. Let A

be the node-arc incidence matrix of a directed graph G = (V,E) and for v C V,

let A be the matrix obtained from A by deleting row v. It is well known that
V

if G is (weakly) connected, the rank of A and of A is JVJ 1, and that any .

(IVI-I) x (IVI-I) nonsingular submatrix of A can be made lower triangular by

appropriate row and column permutations. In addition, every such matrix has

the following property.

Lena 3. Let B = (b ) be a (f -l) x (I -1) lower triangular
i-I

submatrix of A . Then B ( .) is lower triangular and for
V 13

i = I - < i, every nonzero has the same sign as b
ij 4i

Proof. Let the rows and columns of B be indexed by

M = {l,...,m = IVI-}, and for R, C G M, let BC be the submatrix of B with 0
R

rows and columms in R and C, respectively.

3
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We use induction on m. The statement is trivially true for m 1.

Suppose it is true for m = 1,...,k and let m = k + 1 k 2. Then, denoting
K = {l,...,k =m-,

KK

-1 _ -_
Bx  0 (B') - ' 0

B- I K .= - ,
K~- 1 KK-I : I

a b -b - BB) b -m , m mm m K )  ' mm,

By the induction hypothesis, for i = 1,...,k every nonzero entry in row i

of (B K) has the same sign as b. Hence the claim of the Lemma is true for
": t e f rst m-I ows of -I

the first w-1 rows of B- On the other hand, the i-th entry of the row

vector B K, if nonzero, has the sign opposite to that of b (from the node-arc
m ii

incidence relation). Thus -B (BK ) - 0 and therefore every nonzero entry in

row m of B has the same sign as b- , hence b This completes the
Im mm

induction. 1

Proof of Theorem 2. Since each matrix A k , k = 1,...,q, has a redundant

row, we delete from each Ak the row corresponding to the unique nonzero entry

of dik which is in the same position for each i e T. We then delete the

corresponding entry from each d , i e T; and if for some k e {l,...,q} the

remaining nonzero entry of each d 1 , i F T, is negative, we also change the

k lk -k Iksign of A and of each d , i E T. Let A and d be the resulting matrix and

vectors. When we have applied this operation to each block of A, the

resulting vectors d , i e T, are all nonnegative and the resulting matrix A is

of full row rank. The polyhedra P. are now defined by the systems Ax = d
I

x k 0, i c T.

Let m be the number of rows of A. Then any mxm nonsingular submatrix B

of A can be brought by row and column permutations to the form

I )

B B
B q

where each B in a square lower triangular matrix and the blanks are zeros.

4



Let B be any such matrix; then its inverse is

B-_

B-

Bq it

From Lemma 3, B_ is lower triangular and in every row i c {l,... ,m} of

B -
, all nonzero entries have the sign of b . Since d 0, i e T, for any

ITIX e R , X k 0, such that E(X :i e T) = 1, B-d(X) k 0 implies that every

diagonal element b such that X > 0 must be 1 (i.e. positive). But then

B- di  0 for all i F T such that X > 0, i.e. the polyhedra P. satisfy

condition (3) of Theorem 1; therefore C Q.I 0

3. Another Application: Two Terminal Steiner Tree Polyhedra 1

As a further application, we dicuss the case of two terminal Steiner tree

polyhedra and derive from our result the compact linear characterization

obtained (by other means) by Ball, Liu and Pulleyblank [3]. Let G = (V,E) be

an arc-weighted directed graph with three distinguished nodes: a source

(root) s, and two sinks (terminals), t and r. A two terminal Steiner tree in

G is a minimum-weight arborescence rooted at s and containing nodes t and r.

Such an arborescence is the union of three directed paths, from s to some node

v, from v to t and from v to r, where v may or may not be distinct from s, t

and r. However, the converse is not true, i.e. the union of directed paths .1

from s to v, from v to t and from v to r, is not necessarily a rooted •

arborescence: it is one if and only if the three paths are node-disjoint.

When this is not the case, the union of the three paths is called a Steiner

net. S

For any v C V, the incidence vectors of directed paths from s to v in G

are the extreme points of the polyhedra defined by the system Ax = e - e,
8 V

x k 0 where A is the node-arc incidence matrix of G and for i e V, e is the

lvii-th unit vector in R v Also, the incidence vectors of directed paths from

5



v to t and from v to r in G are the extreme points of the polyhedra defined by

the systems Ax = e - e , x k 0 and Ax = e - e , x k 0, respectively.v t v r

Now let P(v) be the set of those x C R 1E for which there exist vectorsa t r I1 -I
x , x x cR satisfying

Ax= e -e6I V

(4) Ax = e-

Ax= e - eV r

-Ix - Ixt - Ixr + Ix = 0

9 t r
x ,x , x 0.

It is not hard to see that the extreme points of P(v) are precisely those

1E1 F t rx c R such that x = x* + xt + x r for some incidence vectors x , x and x

of directed paths in G from s to v, from v to t and from v to r, respectively.

Indeed, since x is unconstrained in sign, the last matrix equation of (4) does

S t rnot impose any constraint on x , x , and x . Therefore, x is an extreme point

of P(v) if and only if each of x', x t, and xr is an extreme point of the

polyhedron defined by x" k 0 and the first, xt 0 and the second, x F - 0 and

the third matrix equation of (4), respectively.

To get from (4) a system of full row rank, we delete row s from the first

matrix equation, row t from the second, and row r from the third one, and we

also change the signs in the first matrix equation. We thus obtain the system

-A x -e

(5) Ax e
r

Ax =e .r v

-Ix* - Ix - Ixr + Ix - 0

0 t r
x, x, x O,

equivalent to (4); and we can write for v e V,

P(v) xcl z  3 , x , x R such thatt r

(x8, x xF, x) satisfies (5)

6
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Consider now the two-terminal Steiner tree problem in G. If the weights

are nonnegative, then this problem is

min { cx I x e cony u (P(v) : v E V) 1, S

since the minimum is always attained for some x that is the incidence vector

of an arborescence rooted at s and continuing nodes t and r. (If the vosts

are arbitrary and there exists a negative-cost directed cycle, the above

problem has no finite minimum. If G has no negative-cost cycles but some of

the costs are negative, the optimum may occur for a Steiner net instead of a

Steiner tree, and some arcs may have a flow greater than one).

Theorem 4. The (closed) convex hull of the union of P( v) for all v c V

is the set of those x c R for which there exist vectors x , x

xr e R E and X c R lV1 satisfying the system

-A x -IX= 0
t

(6) Atx -1% 0

r
-Ix' -Ix - Ix r + Ix =0 .

6 t r
x , x , X k 0, % 0.

Proof. The system (6) can be rewritten as

My - LX 0

(7) IX I

y, X =

where L = (I, I, I) and y = (x*, x X x) e R We will show that

condition (3) of Theorem 1 is satisfied for (7) viewed as an instance of (2).

The matrix M has 31VI - 3 + IE1 :p p rows and is of full row rank. Any p x p

nonsingular submatrix of M can be brought by row and column permutations to .

7
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the form

B B

B

t r

whereB B and B are (Ivi - 1) x (IV - 1) lower triangular submatrices of

Ago A and A , respectively, J , J and J are IEI x (IVi - 1) submatrices of

I, I itself is the identity matrix of order lEt, and the blanks are zero

matrices. Clearly, B "1 is of the form
-1

ir
8 Bt  r-
j * j*

for some unspecified J*, J* and J*.

From Lemma 3, each diagonal block of B - 1 is lower triangular and every

nonzero entry in any of the first 31VI-3 rows of B has the same sign as the

corresponding diagonal element of B. It then follows that for B-LX k 0 to be

satisfied for any X k 0 (with 1X = 1), it is necessary that every diagonal '

entry of B be +1. But then B -LX a 0 implies B-2.1  0 for every column t of

L such that XI > 0, i.e. condition (3) of Theorem 1 is satisfiedll

Theorem 4 asserts that all basic solutions to the system (6) are integer, '

and thus (6) represents a compact (polynomial-sized) linear characterization

of the two terminal Steiner tree polytope. This characterization is not new;

in fact, it is due to Ball, Liu and Pulleyblank[3]. However, our proof of its

validity is new, and puts this problem ir+o the more general context of unions

of polyhedra whose convex hull has the simple representation (2).

It should be mentioned that the approach discussed here can be extended

to k-terminal Steiner tree polytopes; the resulting formulation involves the

union of a number of polytopes exponential in k, but polynomial in JlV for

fixed k.



Acknowledgement

Thanks are due to Charles Blair for pointing out an error in an earlier

draft of this paper.

References

[] E. Balas, "Disjunctive Programing: Properties of the Convex hull of

Feasible Points." MSRR No. 348, July 1974.

[2] E. Balas, "Disjunctive Programming and a Hierarchy of Relaxations for

Discrete Optimization Problems." SlAM Journal on Algebraic and Discrete

Methods, 6, 1985, 466-486.

[3] M. 0. Ball, W. Liu and W. R. Pulleyblank, "Two Terminal Steiner Tree

Polyhedra." Report No. 87466-OR, Institut fur Okonometrie und Operations

Research, University of Bonn, April 1987.

[4] C. Blair, "Representation for Multiple Right Hand Sides." Business

Administration Department, University of Illinois at Champaign, 1987.

[5] R. G. Jeroslow, "A Simplification for Some Disjunctive Formulations."

Georgia Institute of Technology, December 1985.

9


